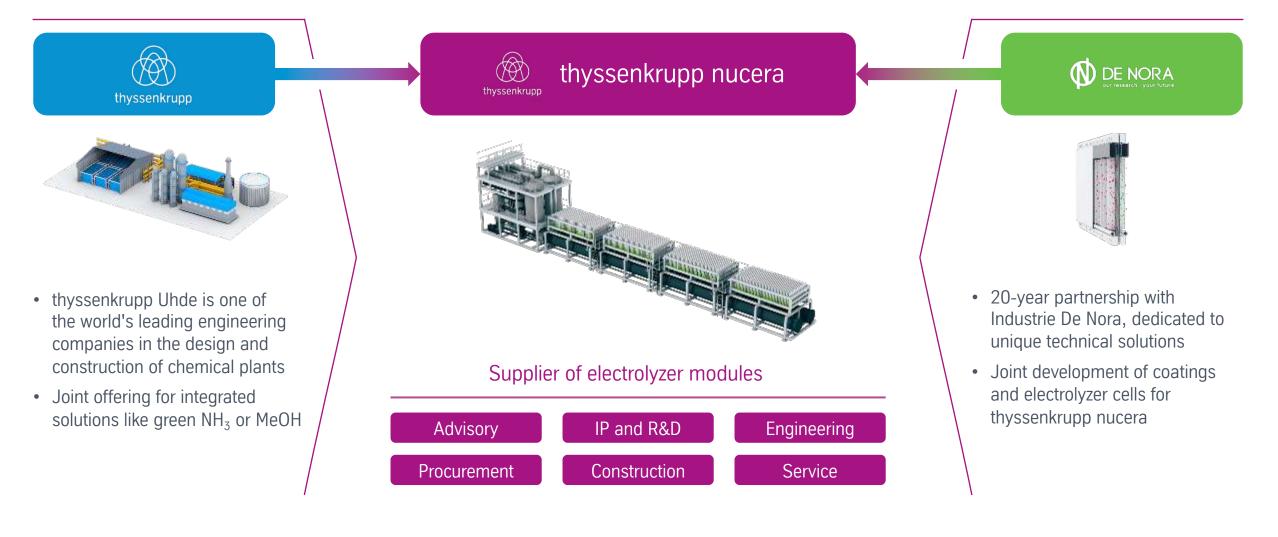
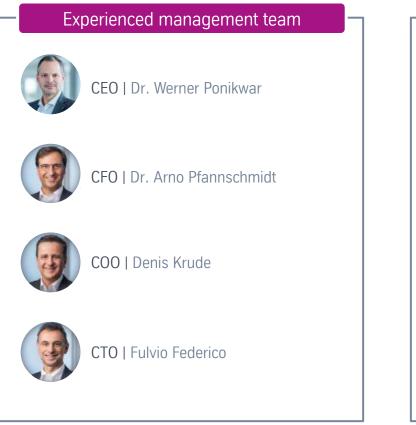
Large-scale water electrolysis for decarbonized industries


Green hydrogen technology for multi- and gigawatt installations



Who we are

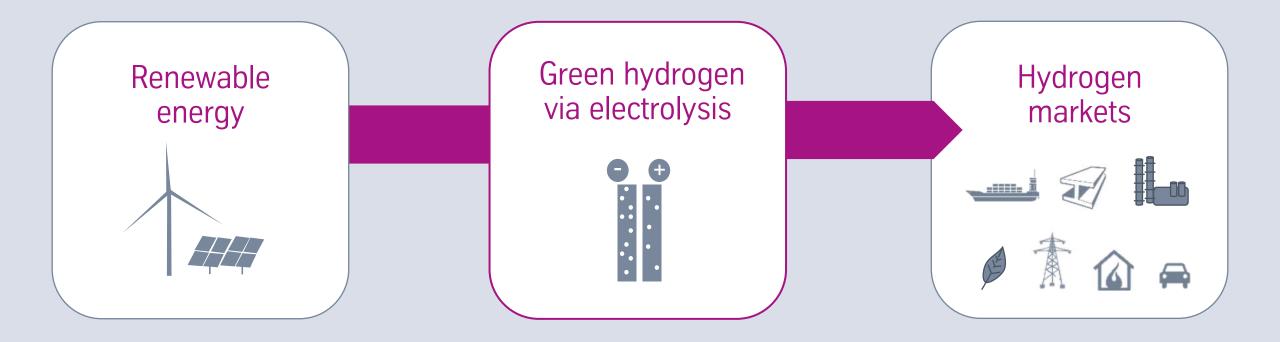
A leading Alkaline Water Electrolysis (AWE) and Chlor-Alkali (CA) technology provider globally with strong partners

Experienced management team is building on a leading global organization with a network close to customers

- Expansion of existing offices in capacity and capabilities
- Establishment of new offices in Australia and Saudi Arabia

- Strong talent attraction across functions
- >500 headcount in October 2022

thyssenkrupp nucera is well prepared for the future of rapid growth


Purpose: We shape the new era.

Vision: #1 provider for hydrogen and chlorine technologies.

Mission: With passion for innovation, we enable our customers to make superior electrolysis products and minimize the CO₂ footprint.

Electrolysis connects the renewable energy sector with a wide range of industries and enables industry decarbonization

Green hydrogen economy drivers

Climate & environmental protection

Growing renewable energy sector at low cost

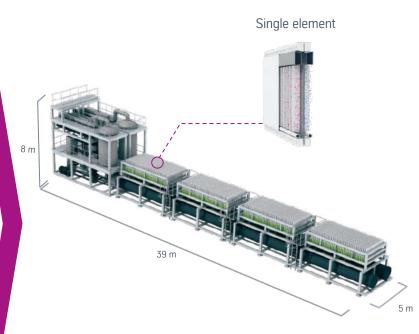
Appropriate legal frameworks

Our product

Our standardized 20 MW electrolyzer module

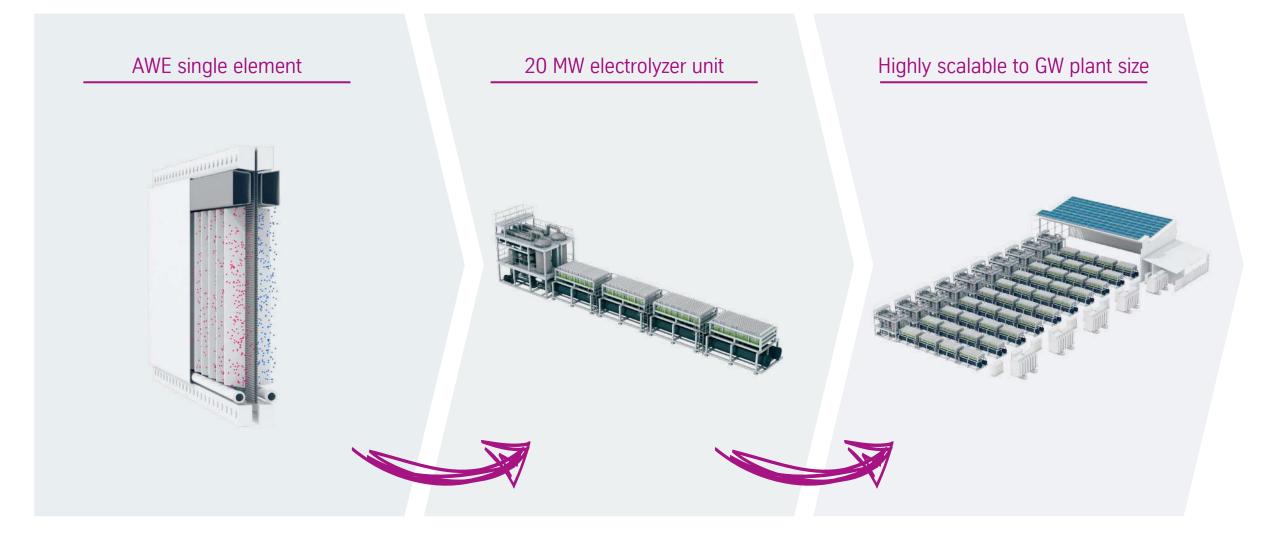
10 Gigawatt

installed Power¹ (incl. Chlor-Alkali electrolysis)


50 years expertise in design, construction and operation

> 1 Gigawatt

manufacturing capacity for water electrolysis equipment in Germany



ⁱ1 incl. Chlor-alkali electrolysis

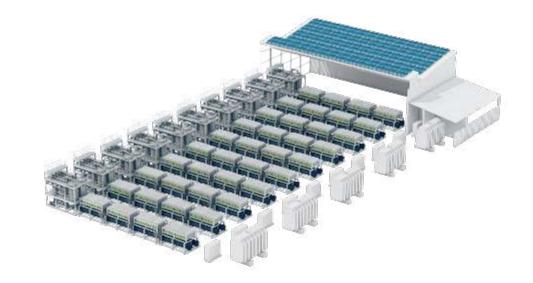
- ✓ Safety |Non-pressurized design | single element monitoring
- ✓ Proven record | Leader in industrial scale electrolysis
- ✓ High Performance | Leading in total cost of ownership
- ✓ Compact Design | High current density | small footprint
- ✓ Reliability | Reliable operations
- ✓ Service | ^{Fit for circular economy and refurbishments} Single element exchange instead of stacks
- ✓ Longevity | Proven holistic lifecycle approach Established service network
- ✓ Financing | Well referenced cell design and expertise in electrolysis support a viable banking case

thyssenkrupp nucera offers an efficient and highly scalable module concept to match market requirements

Our standardized high performance product and its key features

Output from a 20 MW_{el} module

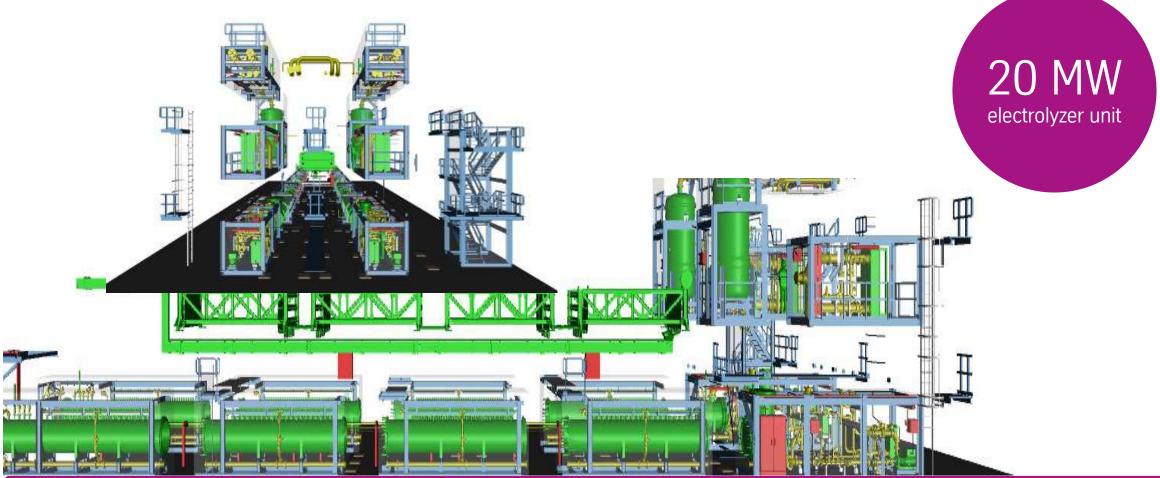
Hydrogen production rate	4,000 Nm ³ /h*
Hydrogen pressure at AWE module	0.300 barg
Hydrogen purity, saturated with H_2O at 40 °C	99.9 % (v/v)
Oxygen production rate	2,000 Nm ³ /h*
Oxygen pressure at AWE module	0.200 barg
Oxygen purity, saturated with $\rm H_2O$ at 40 °C	99.5 % (v/v)


Operability

The turn down ratio of the electrolysis modules	10 %
The turn up ratio of the electrolysis modules	100 %
Ramp-speed (up and down, hot system)	Suitable to renewable energy sources
Start-up times: Cold to 100 % load	40 – 60 min.
Availability	up to 98 %

Power consumption at start of life (DC)

Electrolyzer, at max. capacity


4.5 kWh/Nm³ (DC)

Power consumption at start of life (AC)	
 System at nominal capacity: incl. transformation / rectifying incl. hydrogen compression to 30 bar_g incl. all other electrical consumers within battery limits (purification of 99,999 %) 	4.9 kWh/Nm ³ (AC)

 * Nm³ is defined as 1 m³ of gas (100%) at 273.15 K and 1.013 bar

Our 20 MW module has a containerized skid-mounted configuration - transportable anywhere in the world

Applying thyssenkrupp nucera's know-how on AWE and engineering provides an attractive solution to serve global demand

thyssenkrupp nucera today and tomorrow

Current projects thyssenkrupp nucera

Unigel	 Three 20 MW standard electrolyzers (= 60 MW) Green hydrogen to produce green ammonia Located in Camaçari Industrial Complex, Brazil 	
Air Products	 40 MW electrolysis in 2023 (estimated) Located in Casa Grande, Arizona, USA Liquid hydrogen facility for mobility market 	
Shell	 200 MW electrolysis plant in 2024 (estimated) Located in Rotterdam, Netherlands Green hydrogen factory, start up in 2024 (estimated) 	
CFI	 20 MW electrolysis in 2023 (estimated) Located in Donaldsonville, LA, USA Feed green hydrogen into existing ammonia plants to produce green ammonia (decarbonization) 	
NEOM	 > 2 GW electrolysis in 2026 (estimated) Located in NEOM, KSA Green hydrogen (650 t per day) to produce green ammonia (energy carrier) 	THE REAL

Rotterdam – an important location for Western Europe's green energy supply

Source: Shell

14

thyssenkrupp nucera

Shell

Energy competence meets engineering excellence

The Ruhr region | A new hydrogen valley

- Clustered hydrogen demand and technological expertise for construction and operation of electrolyzers
- A cross-industry blueprint and pioneer for hydrogenbased sector coupling
- Transforming the Ruhr region into a green industrial location in the center of Europe by integrating new green value chains and emissions cycle management in the existing large-scale industry

Demonstrator and test stand of AWE technology Carbon2Chem in Duisburg

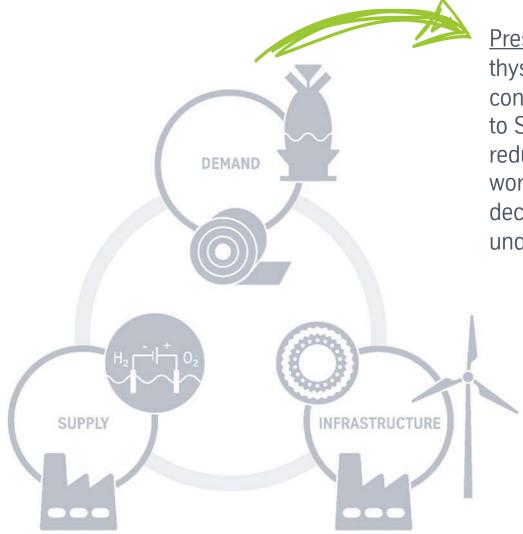
0

0000

Continuous testing of innovative components and materials

- Capacity: up to 2 MW
- H₂ production: up to 440 Nm³/h
- H₂ purity: > 99.95 % (dry)

Carbon2Chem[®] supported by


Federal Ministry of Education and Research

BMBF funding numbers 3EK3037 to 03EK3043

00000000000

thyssenkrupp nucera

thyssenkrupp's hydrogen triangle

Press release March 1st 2023: thyssenkrupp Steel awards a contract worth billions of euros to SMS group for a direct reduction plant: one of the world's largest industrial decarbonization projects gets underway

We shape the new era.