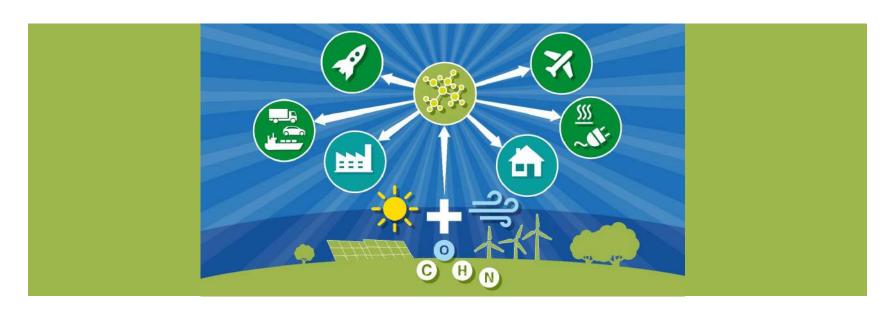
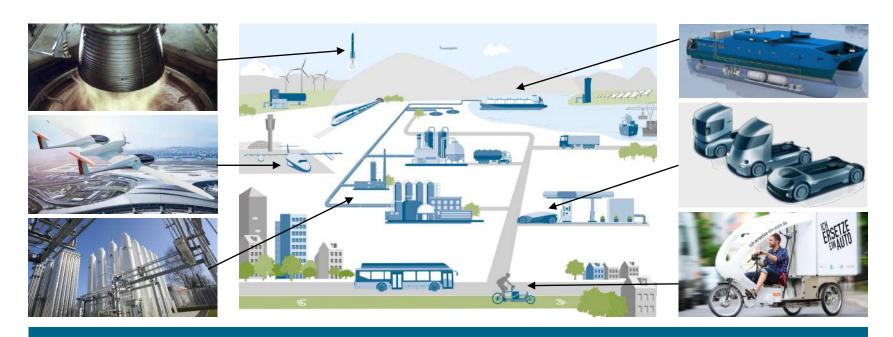


Nathalie Monnerie Institute of Future Fuels German Aerospace Center - DLR

German Aerospace Center DLR


Research Center + Space Agency + Project Management Agency

- Europe's largest research centre for aeronautics and space
- Close cooperation with science, business and industry
- Participation-led ministry BMWK, institutional funding by BMVg, project funding by BMI, BMU, BMZ, etc.


EU Green Deal: Aeronautics, Space, Energy, Transport

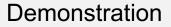
- Unique position in interdisciplinary research on Aeronautics, Space, Energy, Transport and security
- Preparation of energy, fuel, transport scenarios and their climate impacts
- Synergies and sector couplings

DLR Hydrogen World

- System competence and test facilities: generation, transport, utilisation
- Synergies in Aerospace, Aeronautics, Transport, Energy, Safety, Digitalization in with very many DLR locations
- DLR member of, among others: National Hydrogen Council and Hydrogen Europe Research

Institute of Future Fuels

Institute of Future Fuels



Development of alternative fuels

Technology development for efficient and economical production of energy sources for a global, renewable energy economy

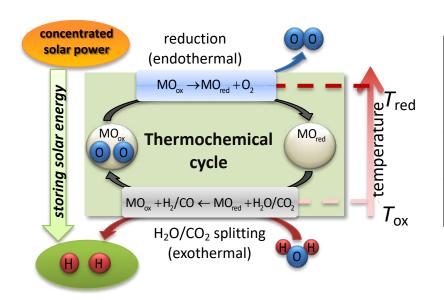
Solar chemical processes

Material and component design

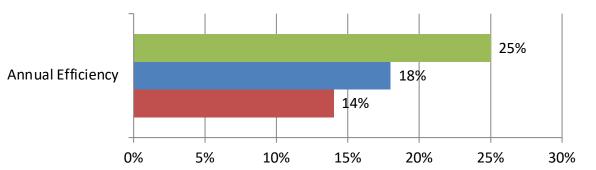
- Locations: Jülich and Cologne, increase to 120 employees
- Support for structural change in the Rhenish region
- · Contributions to the decarbonization of energy, aviation and transport
- Infrastructure and large-scale facilities for process development

DLR-Institute of Future Fuels: Sites and Global network

Laboratories and large plants



Solar Hydrogen Production



Hydrogen production: Solar thermal water splitting

Process	Temperature of the chemical reaction
Alkaline Electrolysis	25°C
High temperature steam electrolysis	850°C
Thermochemical cycle with ceria	1500 / 1150°C

G.J. Kolb, R.B. Diver SAND 2008-1900 / N. Siegel et al. I&EC Research May 2013

- Thermochemical cycle with ceria
- High temperature steam electrolysis
- Alkaline Electrolysis

HYDROSOL – 20 years development

HADLOSOF HADLOSOF-11 HADLOSOF-3D

3 kW_m, x 2, continuous H₂ production

3 kW_m, x 2, continuous H₂ production

100 kW_m, x 2, pilot plant

100 kW_m, x 2, pilot plant

2 kW_m, x 2, pilot plant

2 kW_m, x 3, pilot plant

3 kW_m, x 2, pilot plant

4 kW_m, x 2, pilot plant

3 kW_m, x 3, pilot plant

4 kW_m, x 3, pilot plant

4 kW_m, x 4, production

3 kW_m, x 5, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

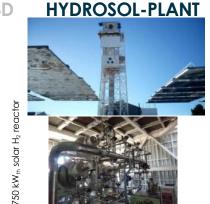
4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

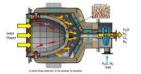
4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant

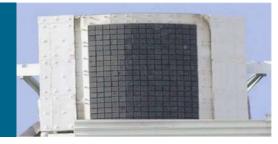

4 kW_m, x 6 kW_m, x 7, pilot plant

4 kW_m, x 6 kW_m, x 7, pilot plant


4 kW_m, x 6 kW_m, x 7, pilot plant

5 kW_m, x 7, pilot plant

6 kW_m, x 8 k


APTL/CERTH DLR JM STOBBE 2008
APTL/CERTH
DLR
CIEMAT
STOBBE

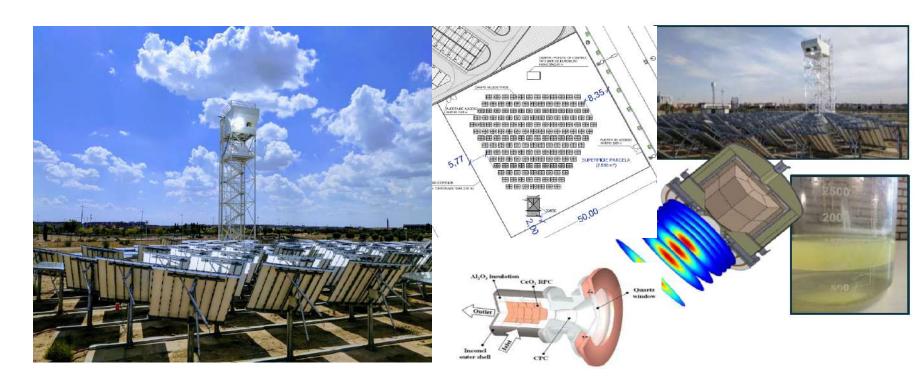
2014
APTL/CERTH
DLR
CIEMAT
HYGEAR
TOTAL

2018
APTL/CERTH
DLR
CIEMAT
HYGEAR
HELPE

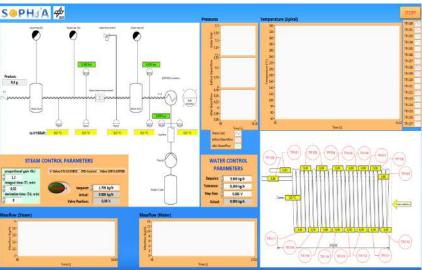
2023
APTL/CERTH
DLR
CIEMAT
HYGEAR
ENGICER
SUPSI
CEA
ABENGOA

- Volumetric receiver concept
- SiSiC monoliths with Honey comb structure
- H₂ production successfully demonstrated in solar Tower
- 750 kW plant

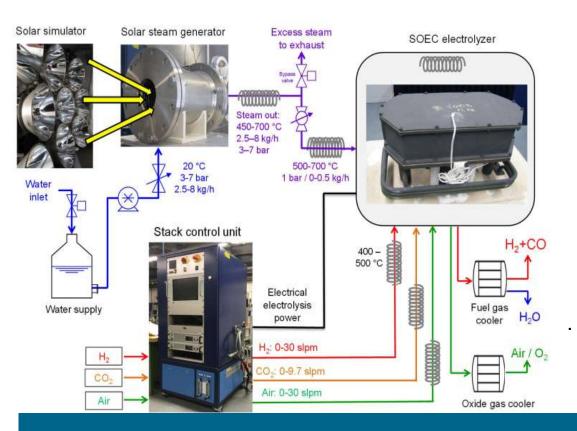
HYDROSOL – Impressions from the plant



Sun2Liquid: Solar field and tower for thermochemical processes - IMDEA - Mostoles, Madrid

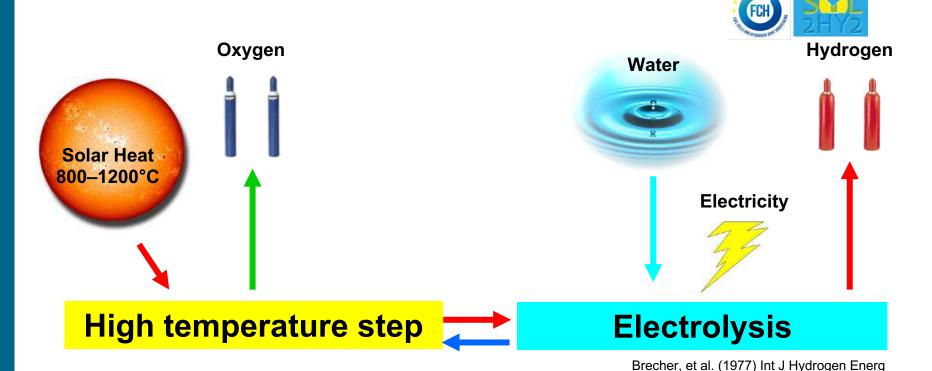

- Demonstration of ceria redox cycle for liquid hydrocarbon production at 50kW scale
- Plant is successfully in operation for H₂O and CO₂ splitting
- Successful Construction of tower and field
- 50kW aperture (d=16cm); Cmean=2500 (peak > 4000); 169 Heliostats;

Hydrogen production: Solar driven high temperature electrolysis



- Proof of principle of 3 kWe HTE coupled to concentrated solar energy
- Design and operation
- · Successful Operation of sol driven high temperature electrolyser
- Nominal steam mass flow: 2.0 kg h-1
- Steam temperature/ pressure: 180°C at 4 bar(a)
- Maximum pressure fluctuation: +/- 25 mbar

Hydrogen production: Solar driven high temperature electrolysis



- Production of solar hydrogen 8.4 SLPM
- · Steady state conditions achieved
- HTE successfully realised with solar-thermal generated steam
- Steam conversion rate: 70%
- http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10258/

Hydrogen production: Hybrid Sulfur cycle

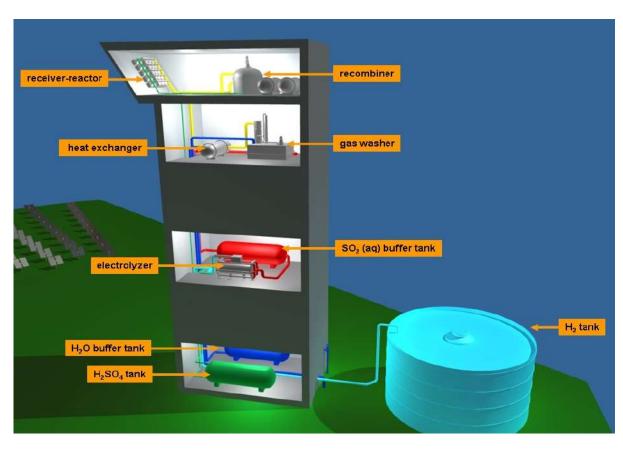
Thermochemical decomposition of H2SO4 (endothermic)

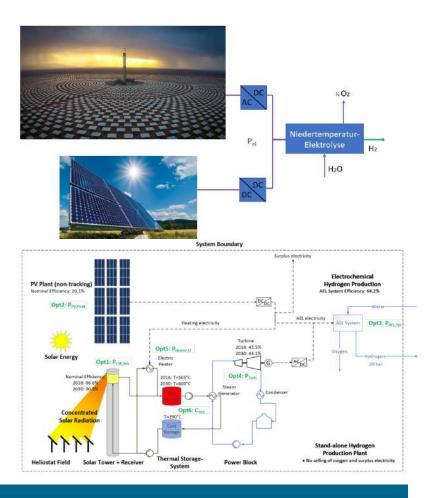
 $H2SO4 (aq) \rightarrow H2O(g) + SO2(g) + 1/2O2(g) @ T=800-1200$ °C

Electrochemical hydrogen production step

 $SO_2(aq) + 2H_2O(I) \rightarrow H_2SO_4(aq) + H_2(g) @ T=80-120^{\circ}C$

Hybrid Sulfur cycle: Implementation into a Solar Tower

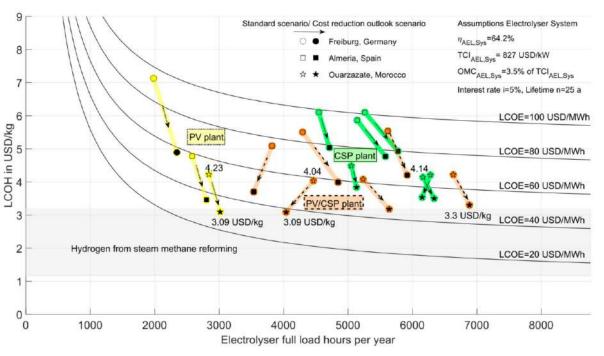



- Solar sulphuric acid splitting as a sub-process of hydrogen production in thermochemistry
- Test operation at the Jülich solar tower
- Demonstration at 39 kW solar power and 70 ml/min (65 w%) sulphuric acid

DLR

Hydrogen production: PV/CSP hybrid power plant and low-temperature electrolysis

Coupling PV/CSP


- Combination of advantages of both technologies:
 - Low PV electricity generation costs
 - Low costs for thermal liquid salt storage
- High full load hours with low electricity generation costs
- Combination of PV and CSP electricity production in the best way for cost-optimal operation of the alkaline electrolyser system

- Combination of CSP with thermal liquid salt storage with PV power plant
- Achievment of a relatively continuous power supply for AEL and other process units

Example of assessment: Hydrogen production with PV/CSP hybrid power plants

- Results Minimisation of hydrogen production costs
- Freiburg: only PV
- CSP: for a DNI in the range of 2000 kWh/m²a and above

- Local price index for installation of solar equipment
- 2 cost scenarios: today and scenario which considers the possible cost reductions until 2030
- Selling of surplus electricity and of O₂ as a by-product is not considered

